Backwoods Power & Water

Solar Powered Water Filtration System

Steven Guy & Ryan Graves, UA ECE Department April 21, 2012

Background

- Senior Design Course (2 semester sequence)
- Concept Fabrication Testing & Validation
- Faculty Supervised
- Department Funded

Water Filtration System

- Project Supervisor
 - Dr. Timothy Haskew
- Team Members
 - Erica Boyle
 - Travis Cowart
 - Rachael Fleischman
 - Ryan Graves
 - Steven Guy
 - Christa Hart

Goals/Specifications

Based on Ideal Weather Conditions

- 2.6 gal of Drinking Water Per Hour
- 4.2 gal of Clean Utility Water Per Hour
- 9.8 Hour Charge Time
- 3.4 Hour Run Time
- Total Time 13.2 Hours

System Overview

System Overview

Solar Panel

SunWize OEM-40 Specifications

Maximum Power Output: 40 W

Open-Circuit Voltage: 21 V

Short-Circuit Current: 2.68 A

Voltage at Maximum Power: 16.7 V

Current at Maximum Power: 2.4 A

[1]

DC-DC Converter

DC-DC Converter-Breadboard

Converter Voltage vs. Expectations

Voltage vs. Duty Ratio with 6 V Supply (Breadboard)

Solar Simulator / Load Power on Breadboard

Charge Controller

- Steca Solarix
- 8 A
- Two LEDs
 - Controller Status
 - Battery SOC

Charge Controller

LED 1 (Info) for operating status and fault messages LED 2 (Battery) for charge status, load shedding and early warning

Integrated temperature sensor

Connection terminals

Plug-in fuse:

8 A controller: 10 A

12 A controller: 15 A

20 A controller: 20 A

30 A controller: 30 A

Battery

- Sunxtender
- Sealed Lead Acid
- 12 V
- 49 Ah

Charging Rates

Discharging Rates

Output Voltage Under Various Loads

Motor Drive and Motor

Motor/Pump

- Flojet Duplex II Diaphragm
 Pump
- Tested Operation with DC Power Supply
 - 9 to 13 Volts
- Combined Testing with Filtration System

Motor Drive

- High Speed Optocoupler
 - Isolates Arduino
- Logic Level N-Channel MOSFET (IRL2703PBF)
 - 30 V, 24 A Max Rating
 - Ultrafast Recovery Diode
 - 300 V, 10 A Rating

Water Output vs. Power Consumption

- At What Voltage Should the Pump Operate?
 - Does Using the Motor Drive to Regulate Voltage Help Us Produce More Water?
 - What is the Best Compromise for the Production of Clean Drinkable Water vs. Utility Water?

Clean Drinkable and Utility Water

- Testing Done for Water vs. Power Consumption
 - Used DC Power Supply
 - Tested from 9 to 13 Volts
 - In 0.25 V Increments
- Data Converted to Find Watt-Hours Consumed per Gallon

Voltage (V)	13	12.75	12.5	12.25	12	11.75	11.5	11.25	11	10.75	10.5	10.25	10	9.75	9.5	9.25	9
Clean Water Watt-Hours per Gallon (Wh/G)	27.99	26.35	25.58		25.77	25.07	24.45	24.08	23.44	22.78	22.95	21.83	22.35	21.38	20.98	20.21	19.65
Utility Water Watt-Hours per Gallon (Wh/G)	18.94	18.34	17.79	17.41	17.04	16.59	16.35	15.75	15.47	15.06	14.66	14.19	13.7	13.28	12.69	12.41	11.96

Drinkable Water Power Consumption and Flow Rate vs. Voltage

Utility Water Power Consumption and Flow Rate vs. Voltage

P&ID

Piping and Instrumentation Diagram

Filtration System

- 5 Stages Using Various Filters Including (1) Sediment Filter, (3) Carbon Filters and (1) Reverse Osmosis Membrane
- Final (6th) Stage Uses UV Sterilization Lamp
 - Standard Voltage: 120Volts, 60 Hz
- Max Flow Rate: 75 gpd
- Feed Water Pressure: 40-95 psi
- Flow Rates at 70 psi
 - Drinking Water: 3.2 gph
 - Utility Water: 4.5 gph

Water Filtration Group 4/18/20

Drinking Water vs. Utility Water

Inverter

Specifications

— Input: 10-16 VDC

Output: 120 VAC / 60 Hz

USB Port

Standard 12 V Outlet

 Power Consumption with Lamp Connected: 18.2 W

Controller

Arduino Mega 2560

- Appropriate I/O
 - Analog Inputs (10-Bit)
 - Pressure Sensors
 - Voltage Sensors
 - Current Sensors

- Digital Outputs
 - LED Indicators
- PWM Outputs (8-Bit)
 - Power Electronics

Controller

Arduino Mega 2560

Implementation

Before After

31

Implementation

Motor, Pump, Strainer

Filtration – First Three Stages

Filtration – Final Three Stages

Implementation

Battery, Charge Controller, Electronics

Solar Panel Mounted on Top

Water Testing

After

Input Water

pН	5
Alkalinity	200 ppm
Chlorine	0 ppm
Hardness	100 ppm
Fe	0 ppm
Cu	0 ppm
NO ₃ -/ NO ₂ -	Unknown

Utility Water

pН	7.5
Alkalinity	120 ppm
Chlorine	0 ppm
Hardness	35 ppm
Fe	0 ppm
Cu	0 ppm
NO ₃ -/ NO ₂ -	Unknown

Drinking Water

рН	7.5				
Chlorine	0 ppm				
Hardness	45 ppm				
Fe	0 ppm				
Cu	0 ppm				
NO ₃ -/ NO ₂ -	0 ppm				

Drinking Water

Pb	Negative
Pesticides	Negative
Bacteria	Purple

Operation

- User Must Supply Their Own Inlet Tank and Outlet Tank for Utility Water
 - Must Attach Hoses to Tank
- Inlet Water Must be Semi-Clear, Non-Stagnant
- Switch Panel Will Have 2 Switches
 - Power On
 - Water On

Budget Breakdown (\$819)

Conclusion

- Portable, Solar Powered Water Filtration Device
- 2.6 gph of Drinking Water and 4.2 gph of Clean/Utility Water
- 90 Watt-hours
- 3.4 Hour Runtime Under Ideal Weather

Questions

